Source code for baseclasses.problems.pyAero_problem

"""
pyAero_problem
"""

# =============================================================================
# Imports
# =============================================================================
import numpy as np
import warnings
from .ICAOAtmosphere import ICAOAtmosphere
from .FluidProperties import FluidProperties
from ..utils import CaseInsensitiveDict, Error, SolverHistory


[docs] class AeroProblem(FluidProperties): """ The main purpose of this class is to represent all relevant information for a single aerodynamic analysis. This will include the thermodynamic parameters defining the flow condition and the reference quantities for normalization. There are several different ways of specifying thermodynamic conditions. The following describes several of the possible ways and the appropriate situations. 'mach' + 'altitude' This is the preferred method for specifying flight conditions. This is suitable for all aerodynamic analysis codes, including aerostructural analysis. The 1976 standard atmosphere is used to compute :math:`P` and :math:`T`. We then compute :math:`\\rho = P / RT`. The remaining quantities are computed with :meth:`baseclasses.AeroProblem._updateFromM`. The resulting Reynolds number depends on the scale of the mesh. 'mach' + 'reynolds' + 'reynoldsLength' + 'T': Used to precisely match Reynolds numbers. The remaining quantities are computed with :meth:`baseclasses.AeroProblem._updateFromRe`. 'V' + 'reynolds' + 'reynoldsLength' + 'T': Used to precisely match Reynolds numbers for low-speed cases. The remaining quantities are computed with :meth:`baseclasses.AeroProblem._updateFromRe`. 'mach' + 'T' + 'P': Any arbitrary temperature and pressure. The inputs are first used to compute :math:`\\rho = P / RT`. The remaining quantities are then computed with :meth:`baseclasses.AeroProblem._updateFromM`. 'mach' + 'T' + 'rho': Any arbitrary temperature and density. The inputs are first used to compute :math:`P = \\rho RT`. The remaining quantities are then computed with :meth:`baseclasses.AeroProblem._updateFromM`. 'mach' + 'P' + 'rho': Any arbitrary density and pressure. The inputs are first used to compute :math:`T = P / \\rho R`. The remaining quantities are then computed with :meth:`baseclasses.AeroProblem._updateFromM`. 'V' + 'rho' + 'T' Generally for low-speed specifications. The inputs are first used to compute :math:`P = \\rho RT`. The remaining quantities are then computed with :meth:`baseclasses.AeroProblem._updateFromV`. 'V' + 'rho' + 'P' Generally for low-speed specifications. The inputs are first used to compute :math:`T = P / \\rho R`. The remaining quantities are then computed with :meth:`baseclasses.AeroProblem._updateFromV`. 'V' + 'T' + 'P' Generally for low-speed specifications. The inputs are first used to compute :math:`\\rho = P / RT`. The remaining quantities are then computed with :meth:`baseclasses.AeroProblem._updateFromV`. The combinations listed above are the **only** valid combinations of arguments that are permitted. Furthermore, since the internal processing is based (permanently) on these parameters, it is important that the parameters given on initialization are sufficient for the required analysis. For example, if only the Mach number is given, an error will be raised if the user tries to set the 'P' (pressure) variable. For our compressible RANS solver, ADflow, the inputs from ``AeroProblem`` are the dimensional freestream values :math:`M`, :math:`P`, :math:`T`, :math:`\\gamma`, :math:`\\rho`, :math:`R_{\\text{gas}}`, Sutherland's law constants :math:`S`, :math:`T_{ref}`, :math:`\mu_{ref}`, and the Prandtl number :math:`Pr`. The non-dimensionalized inputs used in the actual ADflow CFD computations are derived from these inherited inputs. All parameters are optional except for the ``name`` argument which is required. All of the parameters listed below can be acessed and set directly after class creation by calling:: <aeroProblem>.<variable> = <value> An attempt is made internally to maintain consistency of the supplied arguments. For example, if the altitude variable is set directly, the other thermodynamic properties (rho, P, T, mu, a) are updated accordingly. Parameters ---------- name : str Name of this aerodynamic problem. evalFuncs : iterable object containing strings The names of the functions the user wants evaluated with this aeroProblem. mach : float. Default is 0.0 Set the Mach number for the simulation machRef : float. Default is None Sets the reference Mach number for the simulation. machGrid : float. Default is None Set the Mach number for the grid. alpha : float. Default is 0.0 Set the angle of attack in degrees. beta : float. Default is 0.0 Set the side-slip angle in degrees. altitude : float. Default is 0.0 Set all thermodynamic parameters from the 1976 standard atmosphere. The altitude must be given in meters. phat : float. Default is 0.0 Set the rolling rate coefficient qhat : float. Default is 0.0 Set the pitch rate coefficient rhat : float. Default is 0.0 Set the yawing rate coefficient degPol : integer. Default is 0 Degree of polynomial for prescribed motion. ADflow only coefPol : array_like. Default is [0.0] Coefficients of polynomial motion. ADflow only degFourier : integer. Default is 0 Degree of Fourier coefficient for prescribed motion. ADflow only omegaFourier : float. Default is 0.0 Fundamental circular frequency for oscillatory motion. ADflow only cosCoefFourier : array_like. Default is [0.0] Coefficients for cos terms sinCoefFourier : array_like. Default is [0.0] Coefficients for the sin terms P : float. Set the ambient pressure T : float. Set the ambient temperature gamma : float. Default is 1.4 Set the ratio of the specific heats in ideal gas law reynolds : float. Default is None Set the Reynolds number reynoldslength : float. Default is 1.0 Set the reference length for the Reynolds number calculations areaRef : float. Default is 1.0 Set the reference area used for normalization of lift, drag, etc. chordRef : float. Default is 1.0 Set the reference length used for moment normalization spanRef : float. Default is 1.0 Set reference length for span. Only used for normalization of p-derivatives xRef : float. Default is 0.0 Set the x-coordinate location of the center about which moments are taken yRef : float. Default is 0.0 Set the y-coordinate location of the center about which moments are taken zRef : float. Default is 0.0 Set the z-coordinate location of the center about which moments are taken momentAxis : iterable object containing floats. Default is [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]] Set the reference axis for non-x/y/z based moment calculations englishUnits : bool Flag to use all English units: pounds, feet, Rankine etc. solverOptions : dict A set of solver specific options that temporarily override the solver's internal options for this aero problem only. It must contain the name of the solver followed by a dictionary of options for that solver. For example ``solverOptions={'adflow':{'vis4':0.018}}``. Currently, the only solver supported is 'adflow' and must use the specific key 'adflow'. Notes ----- See :class:`baseclasses.FluidProperties` for more parameters that can be set. Examples -------- >>> # DPW4 Test condition (metric) >>> ap = AeroProblem('tunnel_condition', mach=0.85, reynolds=5e6, \ reynoldsLength=275.8*.0254, T=310.93, areaRef=594720*.0254**2, \ chordRef=275.8*.0254, xRef=1325.9*0.0254, zRef=177.95*.0254) >>> # DPW4 Flight condition (metric) >>> ap = AeroProblem('flight_condition', mach=0.85, altitude=37000*.3048, \ areaRef=594720*.0254**2, chordRef=275.8*.0254, \ xRef=1325.9*0.0254, zRef=177.95*.0254) >>> # Onera M6 Test condition (Euler) >>> ap = AeroProblem('m6_tunnel', mach=0.8395, areaRef=0.772893541, chordRef=0.64607, \ xRef=0.0, zRef=0.0, alpha=3.06) >>> # Onera M6 Test condition (RANS) >>> ap = AeroProblem('m6_tunnel', mach=0.8395, reynolds=11.72e6, reynoldsLength=0.64607, \ areaRef=0.772893541, chordRef=0.64607, xRef=0.0, zRef=0.0, alpha=3.06, T=255.56) >>> # NACA0009 hydrofoil (0.9m semi-span) sailing condition (hacked for incompressible flow and viscosity) >>> # R=461.9 for water vapor, but we can lower it to get a higher Mach number >>> # Hack to get the dynamic viscosity of water, TSuthDim must equal T for this to work! >>> ap = AeroProblem("hydrofoil", areaRef=0.243, alpha=6, chordRef=0.27, T=288.15, V=17, \ rho=1025, xRef=0.18, yRef=0.0, zRef=0.0, evalFuncs=["cl","cd","lift","drag","cavitation","target_cavitation"], \ R=100, muSuthDim=1.22e-3, TSuthDim=288.15) """ def __init__(self, name, **kwargs): # Set basic fluid properties super().__init__(**kwargs) # Always have to have the name self.name = name # These are the parameters that can be simply set directly in # the class. paras = { "alpha", "beta", "areaRef", "chordRef", "spanRef", "xRef", "yRef", "zRef", "xRot", "yRot", "zRot", "phat", "qhat", "rhat", "momentAxis", "degreePol", "coefPol", "degreeFourier", "omegaFourier", "cosCoefFourier", "sinCoefFourier", "machRef", "machGrid", } # By default everything is None for para in paras: setattr(self, para, None) # create an internal instance of the atmosphere to use if "altitude" in kwargs: self.atm = ICAOAtmosphere(englishUnits=self.englishUnits) # Set or create an empty dictionary for additional solver # options self.solverOptions = CaseInsensitiveDict({}) if "solverOptions" in kwargs: for key in kwargs["solverOptions"]: self.solverOptions[key] = kwargs["solverOptions"][key] # Any matching key from kwargs that is in 'paras' for key in kwargs: if key in paras: setattr(self, key, kwargs[key]) # Check for function list: self.evalFuncs = set() if "evalFuncs" in kwargs: self.evalFuncs = set(kwargs["evalFuncs"]) if "funcs" in kwargs: warnings.warn("funcs should **not** be an argument. Use 'evalFuncs' instead.", stacklevel=2) self.evalFuncs = set(kwargs["funcs"]) # we cast the set to a sorted list, so that each proc can loop over in the same order self.evalFuncs = sorted(self.evalFuncs) # these are the possible input values possibleInputStates = {"mach", "V", "P", "T", "rho", "altitude", "reynolds", "reynoldsLength"} # turn the kwargs into a set keys = set(kwargs.keys()) # save the initials states self.inputs = {} for key in keys: if key in possibleInputStates: self.inputs[key] = kwargs[key] # full list of states in the class self.fullState = { "mach", "V", "P", "T", "rho", "mu", "nu", "a", "q", "altitude", "re", "reynolds", "reynoldsLength", } # now call the routine to setup the states self._setStates(self.inputs) # Specify the set of possible design variables: self.allVarFuncs = [ "alpha", "beta", "areaRef", "chordRef", "spanRef", "xRef", "yRef", "zRef", "xRot", "yRot", "zRot", "momentAxis", "phat", "qhat", "rhat", "mach", "altitude", "P", "T", "reynolds", "reynoldsLength", ] self.possibleDVs = set() for var in self.allVarFuncs: validDV = False # Flow state variables are only valid DVs if they were specified in the constructor if var in self.fullState: validDV = var in self.inputs else: if getattr(self, var) is not None: validDV = True if validDV: self.possibleDVs.add(var) BCVarFuncs = ["Pressure", "PressureStagnation", "Temperature", "TemperatureStagnation", "Thrust", "Heat"] self.possibleBCDVs = set(BCVarFuncs) # Now determine the possible functions. Any possible design # variable CAN also be a function (pass through) self.possibleFunctions = set(self.possibleDVs) # And anything in fullState can be a function: for var in self.fullState: if getattr(self, var) is not None: self.possibleFunctions.add(var) # When a solver calls its evalFunctions() it must write the # unique name it gives to funcNames. self.funcNames = {} # Storage of DVs self.DVs = {} # Storage of BC varible values # vars are keyed by (bcVarName, Family) self.bcVarData = {} # Solver History self.history = SolverHistory() def _setStates(self, inputDict): """ Take in a dictionary and set up the full set of states. """ # Now we can do the name matching for the data for the # thermodynamic condition. We actually can work backwards from # the list given in the doc string. for key in self.fullState: self.__dict__[key] = None keys = set(inputDict.keys()) inKeys = set(self.inputs.keys()) # first check that the keys in inputDict are valid for key in keys: if key in self.inputs.keys(): pass else: validKeys = "" for vkey in self.inputs: validKeys += vkey + ", " raise Error( "Invalid input parameter: %s . Only values initially specifed" " as inputs may be modifed. valid inputs include: %s" % (key, validKeys) ) # now we know our inputs are valid. update self.Input and update states for key in inputDict: self.inputs[key] = inputDict[key] if {"mach", "T", "P"} <= inKeys: self.__dict__["mach"] = self.inputs["mach"] self.__dict__["T"] = self.inputs["T"] self.__dict__["P"] = self.inputs["P"] self.__dict__["rho"] = self.P / (self.R * self.T) # now calculate remaining states self._updateFromM() elif {"mach", "T", "rho"} <= inKeys: self.__dict__["mach"] = self.inputs["mach"] self.__dict__["T"] = self.inputs["T"] self.__dict__["rho"] = self.inputs["rho"] self.__dict__["P"] = self.rho * self.R * self.T # now calculate remaining states self._updateFromM() elif {"mach", "P", "rho"} <= inKeys: self.__dict__["mach"] = self.inputs["mach"] self.__dict__["rho"] = self.inputs["rho"] self.__dict__["P"] = self.inputs["P"] self.__dict__["T"] = self.P / (self.rho * self.R) # now calculate remaining states self._updateFromM() elif {"mach", "reynolds", "reynoldsLength", "T"} <= inKeys: self.__dict__["mach"] = self.inputs["mach"] self.__dict__["T"] = self.inputs["T"] self.__dict__["re"] = self.inputs["reynolds"] / self.inputs["reynoldsLength"] self.__dict__["reynolds"] = self.inputs["reynolds"] self.__dict__["reynoldsLength"] = self.inputs["reynoldsLength"] # now calculate remaining states self._updateFromRe() elif {"V", "reynolds", "reynoldsLength", "T"} <= inKeys: self.__dict__["V"] = self.inputs["V"] self.__dict__["T"] = self.inputs["T"] self.__dict__["re"] = self.inputs["reynolds"] / self.inputs["reynoldsLength"] self.__dict__["reynolds"] = self.inputs["reynolds"] self.__dict__["reynoldsLength"] = self.inputs["reynoldsLength"] # now calculate remaining states self._updateFromRe() elif {"mach", "altitude"} <= inKeys: self.__dict__["mach"] = self.inputs["mach"] self.__dict__["altitude"] = self.inputs["altitude"] P, T = self.atm(self.inputs["altitude"]) self.__dict__["T"] = T self.__dict__["P"] = P self.__dict__["rho"] = self.P / (self.R * self.T) self._updateFromM() elif {"V", "rho", "T"} <= inKeys: self.__dict__["V"] = self.inputs["V"] self.__dict__["rho"] = self.inputs["rho"] self.__dict__["T"] = self.inputs["T"] # calculate pressure self.__dict__["P"] = self.rho * self.R * self.T # now calculate remaining states self._updateFromV() elif {"V", "rho", "P"} <= inKeys: self.__dict__["V"] = self.inputs["V"] self.__dict__["rho"] = self.inputs["rho"] self.__dict__["P"] = self.inputs["P"] # start by calculating the T self.__dict__["T"] = self.P / (self.rho * self.R) # now calculate remaining states self._updateFromV() elif {"V", "T", "P"} <= inKeys: self.__dict__["V"] = self.inputs["V"] self.__dict__["T"] = self.inputs["T"] self.__dict__["P"] = self.inputs["P"] # start by calculating the T self.__dict__["rho"] = self.P / (self.R * self.T) # now calculate remaining states self._updateFromV() else: raise Error( "There was not sufficient information to form " "an aerodynamic state. See AeroProblem documentation " "in for pyAero_problem.py for information on how " "to correctly specify the aerodynamic state" )
[docs] def setBCVar(self, varName, value, familyName): """ set the value of a BC variable on a specific variable """ self.bcVarData[varName, familyName] = value print("update bc", value)
[docs] def addDV( self, key, value=None, lower=None, upper=None, scale=1.0, name=None, offset=0.0, dvOffset=0.0, addToPyOpt=True, family=None, units=None, ): """ Add one of the class attributes as an 'aerodynamic' design variable. Typical variables are alpha, mach, altitude, chordRef, etc. An error will be given if the requested DV is not allowed to be added. Parameters ---------- key : str Name of variable to add. See above for possible ones value : float. Default is None Initial value for variable. If not given, current value of the attribute will be used. lower : float. Default is None Optimization lower bound. Default is unbonded. upper : float. Default is None Optimization upper bound. Default is unbounded. scale : float. Default is 1.0 Set scaling parameter for the optimization to use. name : str. Default is None Overwrite the name of this variable. This is typically only used when the user wishes to have multiple aeroProblems to explictly use the same design variable. offset : float. Default is 0.0 Specify a constant offset of the value relative to the actual design variable. This is most often used when a single aerodynamic variable is used to change multiple aeroProblems. For example, if you have three aeroProblems for a multiPoint analysis with Mach numbers of 0.84, 0.85 and 0.86, and you want all three to change by the same amount, you could do this:: >>> ap1.addDV('mach',..., name='centerMach', offset=-0.01) >>> ap2.addDV('mach',..., name='centerMach', offset= 0.00) >>> ap3.addDV('mach',..., name='centerMach', offset=+0.01) The result is a single design variable driving three different Mach numbers. dvOffset : float. Default is 0.0 This is the offset used to give to pyOptSparse. It can be used to re-center the value about zero. addToPyOpt : bool. Default True. Flag specifying if this variable should be added. Normally this is True. However, if there are multiple aeroProblems sharing the same variable, only one needs to add the variables to pyOpt and the others can set this to False. units : str or None. Default None Physical units of the variable Examples -------- >>> # Add alpha variable with typical bounds >>> ap.addDV('alpha', value=2.5, lower=0.0, upper=10.0, scale=0.1) """ if (key not in self.allVarFuncs) and (key not in self.possibleBCDVs): raise ValueError("%s is not a valid design variable" % key) # First check if we are allowed to add the DV: elif (key not in self.possibleDVs) and (key in self.allVarFuncs): raise Error( "The DV '%s' could not be added. Potential DVs MUST " "be specified when the aeroProblem class is created. " "For example, if you want alpha as a design variable " "(...,alpha=value, ...) must be given. The list of " "possible DVs are: %s." % (key, repr(self.possibleDVs)) ) if key in self.possibleBCDVs: if family is None: raise Error("The family must be given for BC design variables") if name is None: dvName = f"{key}_{family}_{self.name}" else: dvName = name if value is None: if (key, family) not in self.bcVarData: raise Error("The value must be given or set using the setBCVar routine") value = self.bcVarData[key, family] else: if name is None: dvName = key + "_%s" % self.name else: dvName = name if value is None: value = getattr(self, key) family = None self.DVs[dvName] = aeroDV(key, value, lower, upper, scale, offset, dvOffset, addToPyOpt, family, units)
[docs] def updateInternalDVs(self): """ A specialized function that allows for the updating of the internally stored DVs. This would be used for, example, if a CLsolve is done before the optimization and that value needs to be used.""" for dvName in self.DVs: if self.DVs[dvName].family is None: self.DVs[dvName].value = getattr(self, self.DVs[dvName].key)
[docs] def setDesignVars(self, x): """ Set the variables in the x-dict for this object. Parameters ---------- x : dict Dictionary of variables which may or may not contain the design variable names this object needs """ for dvName in self.DVs: if dvName in x: key = self.DVs[dvName].key family = self.DVs[dvName].family value = x[dvName] + self.DVs[dvName].offset if family is None: setattr(self, key, value) else: self.bcVarData[key, family] = value try: # To set in the DV as well if the DV exists: self.DVs[dvName].value = x[dvName] except: # noqa pass # DV doesn't exist
[docs] def getDesignVars(self): """Get the current DV values. Returns ------- dvs : Dict[str, float] Current design variable values """ dvs = {} for dvName in self.DVs: dvs[dvName] = self.DVs[dvName].value return dvs
[docs] def addVariablesPyOpt(self, optProb): """ Add the current set of variables to the optProb object. Parameters ---------- optProb : pyOpt_optimization class Optimization problem definition to which variables are added """ for dvName in self.DVs: dv = self.DVs[dvName] if dv.addToPyOpt: if type(dv.value) == np.ndarray: optProb.addVarGroup( dvName, dv.value.size, "c", value=dv.value, lower=dv.lower, upper=dv.upper, scale=dv.scale, offset=dv.dvOffset, units=dv.units, ) else: optProb.addVar( dvName, "c", value=dv.value, lower=dv.lower, upper=dv.upper, scale=dv.scale, offset=dv.dvOffset, units=dv.units, )
def __getitem__(self, key): return self.funcNames[key] def __str__(self): output_str = "" for key, val in self.__dict__.items(): output_str += f"{key:20} : {val:<16}\n" return output_str
[docs] def evalFunctions(self, funcs, evalFuncs, ignoreMissing=False): """ Evaluate the desired aerodynamic functions. It may seem strange that the aeroProblem has 'functions' associated with it, but in certain instances, this is the case. For an aerodynamic optimization, consider the case when 'mach' is a design variable, and the objective is ML/D. We need the mach variable explictly in our our objCon function. In this case, the 'function' is simply the design variable itself, and the derivative of the function with respect the design variable is 1.0. A more complex example is when 'altitude' is used for an aerostructural optimization. If we use the Breguet range equation is used for either the objective or constraints we need to know the flight velocity, 'V', which is a non-trivial function of the altitude (and Mach number). Also, even if 'altitude' and 'mach' are not parameters, this function can be used to evaluate the 'V' value for example. In this case, 'V' is simply constant and no sensitivties would be calculated which is fine. Note that the list of available functions depends on how the user has initialized the flight condition. Parameters ---------- funcs : dict Dictionary into which the functions are saved evalFuncs : iterable object containing strings The functions that the user wants evaluated """ if set(evalFuncs) <= self.possibleFunctions: # All the functions are ok: for f in evalFuncs: # Save the key into funcNames key = self.name + "_%s" % f self.funcNames[f] = key funcs[key] = getattr(self, f) else: if not ignoreMissing: raise Error( "One of the functions in 'evalFunctionsSens' was " "not valid. The valid list of functions is: %s." % (repr(self.possibleFunctions)) )
[docs] def evalFunctionsSens(self, funcsSens, evalFuncs, ignoreMissing=True): """ Evaluate the sensitivity of the desired aerodynamic functions. Parameters ---------- funcsSens : dict Dictionary into which the function sensitivities are saved evalFuncs : iterable object containing strings The functions that the user wants evaluated """ # Make sure all the functions have been evaluated. tmp = {} self.evalFunctions(tmp, evalFuncs) # Check that all functions are ok: if set(evalFuncs) <= self.possibleFunctions: for f in evalFuncs: funcsSens[self.funcNames[f]] = self._getDVSens(f) else: if not ignoreMissing: raise Error( "One of the functions in 'evalFunctionsSens' was " "not valid. The valid list of functions is: %s." % (repr(self.possibleFunctions)) )
def _set_aeroDV_val(self, key, value): # Find the DV matching this value. This is inefficient, but # there are not generally *that* many aero DVs for dvName in self.DVs: if self.DVs[dvName].key.lower() == key.lower(): self.DVs[dvName].value = value @property def mach(self): return self.__dict__["mach"] @mach.setter def mach(self, value): self._setStates({"mach": value}) self._set_aeroDV_val("mach", value) @property def T(self): return self.__dict__["T"] @T.setter def T(self, value): self._setStates({"T": value}) self._set_aeroDV_val("T", value) @property def P(self): return self.__dict__["P"] @P.setter def P(self, value): self._setStates({"P": value}) self._set_aeroDV_val("P", value) @property def rho(self): return self.__dict__["rho"] @rho.setter def rho(self, value): self._setStates({"rho": value}) self._set_aeroDV_val("rho", value) @property def re(self): return self.__dict__["re"] @re.setter def re(self, value): self._setStates({"re": value}) self._set_aeroDV_val("re", value) @property def reynolds(self): return self.__dict__["reynolds"] @reynolds.setter def reynolds(self, value): self._setStates({"reynolds": value}) self._set_aeroDV_val("reynolds", value) @property def reynoldsLength(self): return self.__dict__["reynoldsLength"] @reynoldsLength.setter def reynoldsLength(self, value): self._setStates({"reynoldsLength": value}) self._set_aeroDV_val("reynoldsLength", value) @property def altitude(self): return self.__dict__["altitude"] @altitude.setter def altitude(self, value): self._setStates({"altitude": value}) self._set_aeroDV_val("altitude", value) # def _update(self): # """ # Try to finish the complete state: # """ # if self.T is not None: # self.a = np.sqrt(self.gamma*self.R*self.T) # if self.englishUnits: # mu = (self.muSuthDim * ( # (self.TSuthDim + self.SSuthDim) / (self.T/1.8 + self.SSuthDim)) * # (((self.T/1.8)/self.TSuthDim)**1.5)) # self.mu = mu / 47.9 # else: # self.mu = (self.muSuthDim * ( # (self.TSuthDim + self.SSuthDim) / (self.T + self.SSuthDim)) * # ((self.T/self.TSuthDim)**1.5)) # if self.mach is not None and self.a is not None: # self.V = self.mach * self.a # if self.a is not None and self.V is not None: # self.__dict__['mach'] = self.V/self.a # if self.P is not None and self.T is not None: # self.__dict__['rho'] = self.P/(self.R*self.T) # if self.rho is not None and self.T is not None: # self.__dict__['P'] = self.rho*self.R*self.T # if self.rho is not None and self.P is not None: # self.__dict__['T'] = self.P /(self.rho*self.R) # if self.mu is not None and self.rho is not None: # self.nu = self.mu / self.rho # if self.rho is not None and self.V is not None: # self.q = 0.5*self.rho*self.V**2 # if self.rho is not None and self.V is not None and self.mu is not None: # self.__dict__['re'] = self.rho*self.V/self.mu # if self.re is not None and self.mu is not None and self.V is not None: # self.__dict__['rho'] = self.re*self.mu/self.V
[docs] def _updateFromRe(self): """ Update the full set of states from Re, T, and either V or M with the following steps: #. :math:`a = \sqrt{\\gamma RT}` #. Compute :math:`\\mu(T)` from Sutherland's law. #. :math:`V = M a` or :math:`M = V / a` #. :math:`\\rho = \\frac{Re \\mu}{V L}` #. :math:`P = \\rho R T` #. :math:`q = 0.5 \\rho V^2` """ # Calculate the speed of sound self.a = np.sqrt(self.gamma * self.R * self.T) # Update the dynamic viscosity based on T using Sutherland's law self.updateViscosity(self.T) # Calculate velocity or Mach number if self.V is None: self.V = self.mach * self.a else: self.__dict__["mach"] = self.V / self.a # Calculate density self.__dict__["rho"] = self.re * self.mu / self.V # Calculate pressure self.__dict__["P"] = self.rho * self.R * self.T # Calculate kinematic viscosity self.nu = self.mu / self.rho # Calculate dynamic pressure self.q = 0.5 * self.rho * self.V**2
[docs] def _updateFromM(self): """ Update the full set of states from M, T, rho with the following steps: #. :math:`a = \sqrt{\\gamma RT}` #. Compute :math:`\\mu(T)` from Sutherland's law. #. :math:`V = M a` #. :math:`Re/L = \\rho V / \\mu` #. :math:`\\nu = \\mu / \\rho` #. :math:`q = 0.5 \\rho V^2` """ # Calculate the speed of sound self.a = np.sqrt(self.gamma * self.R * self.T) # Update the dynamic viscosity based on T using Sutherland's law self.updateViscosity(self.T) # Calculate velocity self.V = self.mach * self.a # Calculate Reynolds per length self.__dict__["re"] = self.rho * self.V / self.mu # Calculate kinematic viscosity self.nu = self.mu / self.rho # Calculate dynamic pressure self.q = 0.5 * self.rho * self.V**2
[docs] def _updateFromV(self): """ Update the full set of states from V, T, rho with the following steps: #. :math:`a = \sqrt{\\gamma RT}` #. Compute :math:`\\mu(T)` from Sutherland's law. #. :math:`\\nu = \\mu / \\rho` #. :math:`q = 0.5 \\rho V^2` #. :math:`M = V / a` #. :math:`Re/L = \\rho V / \\mu` """ # Calculate the speed of sound self.a = np.sqrt(self.gamma * self.R * self.T) # Update the dynamic viscosity based on T using Sutherland's law self.updateViscosity(self.T) # Calculate kinematic viscosity self.nu = self.mu / self.rho # Calculate dynamic pressure self.q = 0.5 * self.rho * self.V**2 # Calculate Mach number self.__dict__["mach"] = self.V / self.a # Calculate Reynolds per length self.__dict__["re"] = self.rho * self.V / self.mu
def _getDVSens(self, func): """ Function that computes the derivative of the functions in evalFuncs, wrt the design variable key 'key' """ rDict = {} h = 1e-40j hr = 1e-40 for dvName in self.DVs: key = self.DVs[dvName].key family = self.DVs[dvName].family if family is None: setattr(self, key, getattr(self, key) + h) rDict[dvName] = np.imag(self.__dict__[func]) / hr setattr(self, key, np.real(getattr(self, key))) return rDict
class aeroDV: """ A container storing information regarding an 'aerodynamic' variable. """ def __init__(self, key, value, lower, upper, scale, offset, dvOffset, addToPyOpt, family, units): self.key = key self.value = value self.lower = lower self.upper = upper self.scale = scale self.offset = offset self.dvOffset = offset self.addToPyOpt = addToPyOpt self.family = family self.units = units